因式分解公式(因式十字交叉法)

大家好,关于因式分解公式很多朋友都还不太明白,今天小编就来为大家分享关于因式十字交叉法的知识,希望对各位有所帮助!

因式分解公式有哪些因式分解的公式

因式分解公式:

平方差公式:(a+b)(a-b)=a²-b²

完全平方公式:(a±b)²=a²±2ab+b²

把式子倒过来:

(a+b)(a-b)=a²-b²

a²±2ab+b²=(a±b)²

就变成了因式分解,因此,我们把用利用平方差公式和完全平方公式进行因式分解的方法称之为公式法。

例:

1、25-16x²=5²-(4x)²=(5+4x)(5-4x)

2、p4-1

=(p²+1)(p²-1)

=(p²+1)(p+1)(p-1)

3、x²+14x+49

=x²+2·7·x+7²

=(x+7)²

4、(m-2n)²-2(2n-m)(m+n)+(m+n)²

=(m-2n)²+2(m-2n)²(m+n)+(m+n)²

=[(m-2n)+(m+n)]²

=(2m-n)²

扩展资料

注意点:

1、如果多项式的首项为负,应先提取负号;

这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。

2、如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;

要注意:多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1;提公因式要一次性提干净,并使每一个括号内的多项式都不能再分解。

3、如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;

4、如果用上述方法不能分解,再尝试用分组、拆项、补项法来分解。

参考资料来源:搜狗百科-因式分解

因式分解的公式

因式分解公式:

平方差公式:(a+b)(a-b)=a²-b²

完全平方公式:(a±b)²=a²±2ab+b²

把式子倒过来:

(a+b)(a-b)=a²-b²

a²±2ab+b²=(a±b)²

就变成了因式分解,因此,我们把用利用平方差公式和完全平方公式进行因式分解的方法称之为公式法。

例:

1、25-16x²=5²-(4x)²=(5+4x)(5-4x)

2、p4-1

=(p²+1)(p²-1)

=(p²+1)(p+1)(p-1)

3、x²+14x+49

=x²+2·7·x+7²

=(x+7)²

4、(m-2n)²-2(2n-m)(m+n)+(m+n)²

=(m-2n)²+2(m-2n)²(m+n)+(m+n)²

=[(m-2n)+(m+n)]²

=(2m-n)²

扩展资料

注意点:

1、如果多项式的首项为负,应先提取负号;

这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。

2、如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;

要注意:多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1;提公因式要一次性提干净,并使每一个括号内的多项式都不能再分解。

3、如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;

4、如果用上述方法不能分解,再尝试用分组、拆项、补项法来分解。

参考资料来源:百度百科-因式分解

因式分解八大公式分别是什么

因式分解八大公式如下:

1、平方差公式

a²-b²=(a+b)(a-b)

2、完全平方公式

a²+2ab+b²=(a+b)²

3、立方和公式

a³+b³=(a+b)(a²-ab+b²)

4、立方差公式

a³-b³=(a-b)(a²+ab+b²)

5、完全立方和公式

a³+3a²b+3ab²+b³=(a+b)³

6、完全立方差公式

a³-3a²b+3ab²-b³=(a-b)³

7、三项完全平方公式

a²+b²+c²+2ab+2bc+2ac=(a+b+c)²

8、三项立方和公式

a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ac)

平方差公式:a²-b²=(a+b)(a-b)推导过程:

a²-b²

=a²+ab-(b²+ab)

=a(a+b)-b(a+b)

=(a+b)(a-b)

说明:这里推导过程使用了后面的课程添项折项法(添项),这个因式分解添加了ab一项,构造了a+b的公因式,同学们也可以自己试试,添加-ab,也是一样的。

因式分解有哪些公式

因式分解八大公式如下:

1、平方差公式

a²-b²=(a+b)(a-b)

2、完全平方公式

a²+2ab+b²=(a+b)²

3、立方和公式

a³+b³=(a+b)(a²-ab+b²)

4、立方差公式

a³-b³=(a-b)(a²+ab+b²)

5、完全立方和公式

a³+3a²b+3ab²+b³=(a+b)³

6、完全立方差公式

a³-3a²b+3ab²-b³=(a-b)³

7、三项完全平方公式

a²+b²+c²+2ab+2bc+2ac=(a+b+c)²

8、三项立方和公式

a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ac)

平方差公式:a²-b²=(a+b)(a-b)推导过程:

a²-b²

=a²+ab-(b²+ab)

=a(a+b)-b(a+b)

=(a+b)(a-b)

说明:这里推导过程使用了后面的课程添项折项法(添项),这个因式分解添加了ab一项,构造了a+b的公因式,同学们也可以自己试试,添加-ab,也是一样的。

文章到此结束,如果本次分享的因式分解公式和因式十字交叉法的问题解决了您的问题,那么我们由衷的感到高兴!