平行四边形的面积教学设计(认识小数教学设计一等奖)

大家好,关于平行四边形的面积教学设计很多朋友都还不太明白,今天小编就来为大家分享关于认识小数教学设计一等奖的知识,希望对各位有所帮助!

北师大五年级上册:《平行四边形的面积》教学设计

·《平行四边形面积的计算》教案及反思《平行四边形面积的计算》教案及反思教学目标: 1.经历平行四边形面积公式的推导过程,体验成功的快乐,形成数学的经验. 2.知道平行四边形的面积公式. 3.会求平行四边形的面积. 4.利用教师的情感特征调动学生学习的积极性和主动性.教学重点: 1.平行四边形面积公式的推导过...·《平行四边形面积的计算》课后反思(1)平行四边形面积的计算说课稿一、教材简析和教材处理 1.教材简析平行四边形面积的计算是北师大版五年级上册第二单元图形的面积的第四课时的内容。本节课是通过具体的情境提出计算平行四边形面积的问题。这节课是在学生已.....·《平行四边形面积的计算》课后反思《平行四边形面积的计算》课后反思本节课中,学生兴趣盎然,始终以积极的态度、主人翁的姿态投入到每一个环节的学习中。我认为教学成功的关键在于学生是通过自主探究得到了知识,获得了发展。主要.....·平行四边形面积的计算反思设计平行四边形面积的计算反思设计平行四边形面积的计算是以长方形的面积计算为基础,它为进一步学习三角形的面积,梯形面积的计算打下了基?N以诮萄П窘诳问保?捎眉羝吹姆椒ǎ?哑叫兴谋咝巫?胨?嗟让婊?某し叫危?佣?研戮芍?读?灯鹄矗?映.....·《平行四边形面积的计算》说课稿《平行四边形面积的计算》说课稿一、说教材 1、教材分析本节课的知识点是平行四边形面积的计算,学生对于平面图形中边与边不成直角的情况的面积的计算是第一次遇到。

人教版平行四边形的面积教学设计

“平行四边形面积的计算”是五年级上册第六单元的内容。如何教学才能让学生更好地接受知识?下面我给你分享人教版平行四边形的面积教学设计,欢迎阅读。

人教版平行四边形的面积教学设计

教学内容:

教材平行四边形的面积的内容。

知识目标:

通过长方形面积计算知识迁移,理解平行四边形面积的计算公式,并能正确计算平行四边形面积。

能力目标:

在剪一剪,拼一拼、比一比中发展空间观念;在看一看,想一想中初步感知等积转化的思想方法,提高分析问题、解决问题的能力。

情感目标:

通过活动,激发学习兴趣,培养互相合作、交流、探索的精神,感受数学与生活的密切联系。

教学重点:

掌握平行四边形的面积计算公式,能正确计算平行四边形的面积。教学难点:

初步认识转化的思想方法在研究平行四边形面积时的作用,并培养学生的分析、综合、抽象。概括能力和运用转化的方法解决实际问题的能力。

教具学具:

方格纸、平行四边形卡片、剪刀、三角板、直尺等。

探索新知教学片段:

1、比一比,估一估师:现在我们把平行四边形花坛画到纸上,我们先认识平行四边形的底和高。平行四边形的底和长方形的长一样长,平行四边形的高和长方形的宽一样长,它们的面积哪个比较大?生:一样大。

2、生:长方形比较大。生:平行四边形比较大。……

师:大家都有不同的猜测,有很多同学都说一样大,那么,谁的想法正确呢?我们可以用什么方法来验证呢?四人小组讨论。生:可以用数格子的方法。我先数出整块的,然后这些剩下的小块拼一拼,还可以拼成整块的。

师:那么用数方格的方法数数看。数一数,它们的面积各是多少?……

师:哦,你们数的结果是都是72平方米,说明……

生:平行四边形的面积和长方形的面积相等。

师:也就是……

生:平行四边形的面积也是72平方米。

师:长方形的面积我们可以用公式来计算,那平行四边形的面积是不是也有计算公式呢,这就是我们今天要一起探讨的问题。(板书:平行四边形的面积)

[让学生对“平行四边形面积的计算方法”提出猜想,再进行验证,在获得知识的同时能培养学生思考的深入性和严密性。也可制造悬念,进一步激发探究的欲望。新课标指出:“有效的数学学习活动不能单纯地依赖于模仿与记忆,动手实践、自主探索与合作交流是学习数学的重要方式。”但探究学习并不是任由学生发挥而不加引导的。学生往往在运用已有的知识解决问题的过程中还存在着某些障碍。这就需要教师相机诱导,及时介入,以保证学生把更多的精力投入到更好的学习活动中去。]

2、师:还有什么方法可以验证这两个图形的面积哪个比较大呢?……生:我用割一割,补一补的方法,把平行四边形象这样剪开,然后再把它补到另一边去。师:非常好,有自己的方法。下面我们用割补法来看看平行四边形的面积有多大?请同学们先仔细观察,然后说说你的发现。

人教版平行四边形的面积教学反思

平行四边形的面积教学存在三种状态:第一种状态,教师认为学生学习数学就是要掌握知识,所以仅仅关注学生对平行四边形面积计算方法的识记与演练,掌握。只看结果,不看过程。第二种状态,教师开始重视学生获得知识的过程,但重视过程是为了更快地接受知识、更好地理解知识,却忽视了过程本身的价值。第三种状态,希望学生不仅获得平行四边形面积计算公式的知识,而且能获得数学思想和方法,不仅能够正确地应用公式,而且能更好地理解这一公式的来源。在学习中,展示探求平行四边形面积计算方法的真实思维过程,凸显“重知识更重方法,重结果更重过程”的价值追求。我一直在苦苦追求着第三种状态。以下是我在设计与执教“平行四边形的面积”一课中获得的一些启示。

建构主义的学习观认为,对学生的学习,必须赋予“真实性”的学习任务。这种“真实性”的学习任务可以驱动学生迅速产生学习的需要。基于这一认识,我在课始出示主题图,提出:“学校门前的两个花坛分别是长方形和平行四边形,怎样比较两个花坛的面积大小呢?怎样才能求平行四边形的面积?”通过情境的创设,引入一节课将要研究的问题,从而激发学生探究的欲望,真正发挥了情境创设的作用。

“转化”是数学学习和研究的一种重要思想方法。小学阶段的几何形体面积、体积计算公式都是运用“转化”法推导的。平行四边形的面积公式是几何图形面积计算第一次运用“转化”思想方法推导得出的。通过本节课的学习,要能够为推导三角形、梯形面积的计算公式提供方法迁移。因此,本节课让学生形象直观地明白什么是“转化”,深刻理解“转化”的本质。我在教学本节课时采用了“转化”的思想,先通过数方格求面积发现数方格对于大面积的平行四边形来说太麻烦,然后根据观察表格中的数据,引导学生大胆猜想平行四边形的面积可能与谁有关,该怎样计算,学生面对“计算平行四边形面积”这一新问题,就很自然地得到了两种猜想:用平行四边形相邻两边相乘(以前学习的长方形面积计算公式等知识的负迁移)和用平行四边形的底乘以高(转化思想方法的运用)。接着引出你能将平行四边形转化成已学的什么图形来推导它的面积。学生很自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。这样启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法。接着,通过教师的教具演示,为学生架起由具体到抽象的桥梁,使学生清楚的看到平行四边形------长方形的转化过程,以及他们之间的关系,验证了用“底乘高”的猜测是正确的,突出了重点,化解了难点。

《平行四边形的面积》教学设计

教学目标:

1.在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;

2.通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

教学重点:

掌握平行四边的面积计算公式,并能正确运用。

教学难点:

平行四边形面积计算公式的推导。

教学过程:

一、情境激趣

1.播放运载“嫦娥一号”探月卫星的火箭成功发射的录像。

2.师:为了纪念这个有意义的时刻,我们学校的小朋友们在数学活动上利用一些图形拼出了运载“嫦娥一号”的火箭模型呢!

3.(课件出示拼成的模型)让学生观察火箭模型是由哪些图形拼成的。

提问:如果比较这些图形的大小,要知道它们的什么?哪些图形的面积是我们已经学过的?怎样求?

4.比较其中的长方形和平行四边形,谁的面积大,谁的面积小,可以用什么方法?(引导学生说出可以用数方格的方法。)

二、自主探究

1.数方格比较两个图形面积的大小。

(1)提出要求:每个方格表示1平方厘米,不满一格的都按半格计算。

(2)学生用数方格的方法计算两个图形的面积并填写书上80页表格。

(3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。

(4)提出问题:如果平行四边形很大,用数方格的方法麻烦,能不能找到一种方法来计算平行四边形的面积?

(5)观察表格,你发现了什么?

(6)引导学生交流发现并全班反馈得出:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的`面积和长方形的面积相等;平行四边形的面积等于底乘高。

(7)提出猜想:平行四边形的面积=底×高

2.操作验证。

(1)提出要求:请小朋友利用三角尺、剪刀,动手剪一剪拼一拼,把平行四边形想办法转变成我们已学过面积计算的图形,完成后和小组的同学互相交流自己的方法。

(2)学生分组操作,教师巡视指导。

(3)学生展示不同的方法把平行四边形变成长方形。

(4)利用课件演示把平行四边形变成长方形过程。

(5)观察并思考以下两个问题:

A.拼成的长方形和原来的平行四边形比较,什么变了?什么没变?

B.拼成的长方形的长与宽分别与原来平行四边形的底和高有什么关系?

(6)交流反馈,引导学生得出:

A.形状变了,面积没变。

B.拼成的长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。

(7)根据长方形的面积公式得出平行四边形面积公式并用字母表示。

(8)活动小结:我们把平行四边形转变成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。

3.教学例1。

(1)(出示例1)平行四边形的花坛的底是6m,高是4m。它的面积是多少?

(2)学生独立完成并反馈答案。

三、课堂总结

通过这节课的学习,你有哪些收获?(学生自由回答。)

关于平行四边形的面积教学设计的内容到此结束,希望对大家有所帮助。